
B W

I
By Theo Peek

Supervisor: Prof. Dr. Ger Koole

Using XML in Call Centers
BWI-Werkstuk

© Theo Peek, 2003.
This research report can be freely copied, as long as it is distributed as a whole, including the
cover pages, headings and footers.
Author: Theo Peek, supervised by Ger Koole.
You can contact me by sending an e-mail to Theo@TheoPeek.nl. Latest news, updates and
examples can be found on my website: http://www.TheoPeek.nl.

Preface

Using XML in Call Centers Page 3 of 48 By Theo Peek

Preface
Over the last two years, I have used the knowledge that I gained from my studies in Business
Mathematics and Computer Science (in Dutch BWI for Bedrijfswiskunde en Informatica) and put
it to practice in call centers on two occasions. The first was a business case that formed part of
BWI; the second was my part-time job at the Management Information department of a large call
center. Working with call center log data on those two occasions inspired me to choose “Using
XML in Call Centers” as the subject of this research report.

The research report (BWI-werkstuk) forms a standard part of the BWI Masters degree. I started
writing it in September 2002 and finished it in February 2003. Naturally, I owe many thanks to the
people who helped me during my writing.

First of all I would like to mention my supervisor Prof. Dr. Ger Koole, who is the leading Dutch
call center researcher. I am honored to have worked with him and I would like to thank him very
much for his criticism and inspiration. Second reader Prof. Dr. Frank van Harmelen was the first
to be enthusiastic about my idea, for which I owe him many thanks. Drs. Jeen Broekstra and Drs.
Michel Klein helped me by giving me several XML tips and corrections; thank you both. Special
thanks go to Drs. Maaike van den Haak, who never grew tired of telling me that data are plural. I
would like to thank her for the many hours she put into correcting my English.

Theo Peek
February 2003

Management summary

Using XML in Call Centers Page 5 of 48 By Theo Peek

Management summary
In a call center, management reports on prior performance are vital. Based on the information in
these reports, scheduling decisions for the next time period are made. Those decisions in turn
influence the performance and customer service level in that period.

Management reports are based on call center log data, which contain a lot of information about
each call arriving at the call center. In my experience, these log data are very complex and hard to
understand, particularly since these data are stored in tables. Tables are not capable of capturing
the sophisticated process of a call in a call center, because of their simple and rigid structure.

I have invented a better way of logging calls than using traditional tables. XML (eXtensible
Markup Language) is a relatively new technology, which will certainly become more common in
the near future. Using XML offers clear advantages over tables:

� The sophisticated process of a call can be better modeled. This in turn leads to the
following advantages:

� Data are more detailed;
� Data are easier to understand;

� XML offers an excellent validation mechanism called XML Schema. A lot of computer
programs can use this validation to read data, which means that XML data can be
processed in other ways that offer more possibilities than tables.

Using XML for call logging leads to call log data that are easier to understand. As a result, call
centers might be able to downsize their Management Information department or create richer
management reports as a result of the more detailed log data.

As a compromise, it is possible to convert the currently used tables into XML and test them. The
data cannot be as detailed as described before, because data are stored less detailedly in tables, but
this does offer the opportunity to test and experience the advantages that XML offers, without
losing the proven safety of database technology.

Index

Using XML in Call Centers Page 7 of 48 By Theo Peek

Index
Preface... 3
Management summary ... 5
Index ... 7
1 Introduction .. 9

1.1 Problem statement...9
1.2 Structure of this report..9
1.3 For whom is this report?...9
1.4 Website..9

2 What is a Call Center? .. 11
2.1 Introduction ...11
2.2 A basic call center ..11

2.2.1 The process of a call ...11
2.2.2 The challenge...13

2.3 Skill groups ...14
2.4 Further enhancements ..16
2.5 Mathematical models...16

2.5.1 Basic mathematics...16
2.5.2 Advanced mathematics ..18

2.6 Data collection and analysis ...19
3 Why are tables not a feasible data structure? 23

3.1 What are call center log data?...23
3.2 What is a data structure? ...23
3.3 Why look at log data? ..24

4 What is XML?.. 25
4.1 Introduction ...25
4.2 A quick guide..26

4.2.1 Basic XML ...26
4.2.2 Attributes and Namespaces...26
4.2.3 Structuring by DTD or XML Schema ...28

4.3 The future of XML..29
5 How can I use XML to log my calls? ...31

5.1 Simple examples...31
5.2 Complete list of events ...34
5.3 XML Schema..35
5.4 Implementation in the business ...38

5.4.1 Hardware ..38
5.4.2 Software..39
5.4.3 Performance...39

6 Conclusion..41

Index

Using XML in Call Centers Page 8 of 48 By Theo Peek

7 Suggestions for further research.. 43
7.1 RDF...43
7.2 XML tools...43
7.3 Agent log...43
7.4 Relativity ...43

Appendix A: Bibliography... 45
Appendix B: XML software .. 47

B.1 XMLSpy..47

Chapter 1: Introduction

Using XML in Call Centers Page 9 of 48 By Theo Peek

1 Introduction
1.1 Problem statement
In this report, I want to answer the following question:

� Is XML a useful data structure for call center log data?

This leads to the following sub-questions:

� What is a call center?
� Why is the current data storage not feasible?
� What is XML?
� How can I use XML to store call center log data?

1.2 Structure of this report
The main question and the resulting sub-questions are dealt with in separate chapters:
Chapter 2: What is a Call Center?
Chapter 3: Why are tables not a feasible data structure?
Chapter 4: What is XML?
Chapter 5: How can I use XML to log my calls?

In Chapter 6, I will present my conclusions and in Chapter 7 I will present suggestions for further
research.

1.3 For whom is this report?
This report is aimed at anyone with an interest in call centers or XML. Call center managers and
researchers will probably know all about call centers, but may not be aware of the advantages of
XML. I recommend these readers to scan Chapter 2 and read Chapters 3 through 7. While the
mathematics and XML programming in this report might be a bit difficult to understand, the main
problem and the solution should be generally comprehensible.

XML experts will not need a quick XML course, but may be interested in the application of XML
to call centers. I recommend these readers to read Chapters 2, 3, 5, 6 and 7 and scan Chapter 4.
Again, mathematics can be complex, but readers will certainly be able to understand the problem
and solution I present.

1.4 Website
The XML examples I use in this report can all be downloaded from my website:
http://www.TheoPeek.nl.

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 11 of 48 By Theo Peek

2 What is a Call Center?
2.1 Introduction
In the modern information-centered society, a lot of organizations have trouble dealing with the
ever-growing flow of telephone calls. Banks do not want their expensive financial experts listening
to long-winded customers, while customer service is still essential. A call center could be the
solution to these problems. Customers can call a central (possibly toll-free) number for all their
questions, and be directed to the call center, where a number of telephone experts are ready to
assist them.

In this way, only the agents in the call center deal with customers directly, freeing more time for
other employees of the organization, who can focus on their specific expertise. Agents can get
special training, which will turn them into telephonic customer service professionals.

In this chapter, I will describe the process of a call in a basic call center as well as in a more
advanced call center. Then I will introduce a mathematical model used to optimize the processes
in call centers and the data analysis needed for this model.

2.2 A basic call center
2.2.1 The process of a call
A basic call center is typically small, usually with fewer than ten agents and without any complex
routing. The agents are equally trained and qualified and all customers require a similar service.
The process of a call can then be divided into two phases. An activity diagram of the first phase
can be found in Figure 2.1. Please note that this is not a valid UML activity diagram; I have made
some departures for the sake of readability. For more information about UML, I recommend [3].
Let us walk through this diagram step by step.

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 12 of 48 By Theo Peek

Figure 2.1: First phase of the process of a call in a basic call center

The process starts with Connect, when the call is connected to the call center. From this point
onwards, the customer can abandon at any time. Because this can happen at any activity state in
the process, I have omitted the connectors to the Abandon state for a clear organization. If all
agents are busy at the time, the call is queued. When an agent is available, the Automatic Call
Distributor (ACD) routes the call to that agent. The agent should answer the call, but if he or she
does not, the ACD routes the call to another agent. In a well-managed call center, this should of
course never happen. After the agent answers the call, the second phase begins.

The activity diagram of the second phase can be found in Figure 2.2.

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 13 of 48 By Theo Peek

Figure 2.2: Second phase of the process of a call in a basic call center

In the second phase, the actual conversation takes place. When the call ends in this phase, wrap-up
time follows the abandonment or termination, allowing the agent to make notes about the call.
After the activity Talk, two activities can follow: termination, if the customer is satisfied with the
service, or Hold. During Hold, the agent can, for instance, quickly look up some information. In
that case, after Hold, the agent retrieves the call. The agent can also choose to consult another
agent by initiating a second, internal call, which is usually short. When the agent knows enough to
help the customer, the agent drops the internal call and retrieves the customer call. When the
problem is too difficult to handle for the agent, he or she can choose to transfer the customer call
to another agent. The primary agent then performs wrap-up for the call, which ends the call for
that agent. The secondary agent answers the customer call. The call follows the original activity
diagram from that point onwards, but now for the second agent.

2.2.2 The challenge
The basic call center is ideal to describe the challenges call center managers are faced with. A
manager cannot influence the number of calls that a call center has to deal with. By training agents,
he or she might be able to influence the average service time of calls, defined as the total time an
agent spends on a call (talk time + hold time + wrap-up time). But the only thing a manager has
total control over is the number of agents he or she hires. If a manager hires fewer agents, he or
she will save salary and training expenses, but this, of course, increases the risk that a customer will
find all agents busy. This then results in a longer average waiting time and an inferior customer
service.

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 14 of 48 By Theo Peek

On the other hand, when there are fewer agents, their productivity is quite high. The more
agents are hired, the more they are available, waiting for calls. Agents can be in three states:
available, busy or idle. When an agent is talking, on hold or doing wrap-up, he or she is busy.
When he or she is taking a break, in a meeting or doing other work, the agent is said to be idle.
Idle cannot be avoided in many situations, so productivity can be defined as [busy time] / ([busy
time] + [available time]).

To measure customer service, a manager could use the average waiting time, but a more common
quantity is the service level. With a threshold of x seconds (typically, x = 20), the service level is
defined as the percentage of calls answered within x seconds. As a target, a percentage of 80 is
often used, so managers try to hire as few agents as possible while maintaining a service level of
80%. More details on this follow in Paragraph 2.5.

2.3 Skill groups
As a call center gets larger, it becomes more and more difficult to equip all agents with the same
knowledge and skills. A large call center typically provides customers with different services and
therefore it is only natural that agents have different fields of expertise. A way of dealing with
differently trained agents is to assign them to skill groups.

Consider an international call center, which serves customers from Spain and France. Some of the
customers speak French, while others require a Spanish-speaking agent. The call center would do
wise to divide its agents into two skill groups: Spanish-speaking and French-speaking. Some
agents, who speak both, are assigned to both skill groups.

The problem that then arises is how to tell which customer requires which skill. There are four
ways to find out which service a customer requires:

� By hiring a first-line group of agents who determine the service the customer requires and
who then route the customer accordingly;

� By identifying the number the customer calls from (ANI);
� By identifying the number the customer dialed (DNIS);
� By letting customers choose from menu-items (IVR).

Hiring a first-line group of agents would not be wise in this example, but could be useful in others.
Consider, for instance, a bank, whose customers can call with questions about their mortgage or
their stocks. Using an extra line of agents does not change the process described in Paragraph 2.2.

Identifying customers by Automatic Number Identification (ANI) is a possibility that would work
well in an international call center, provided that customers have enabled ANI, since each country
uses a different international access code. In other situations, such as our bank example, this
method is not feasible. A bank does not know the phone number of first-time callers (potential
customers) and will most certainly have customers with both stocks and a mortgage. Furthermore,
if customers call from work or their cell phones, the number is not always recognized. However, if
ANI is used, this does change the process of Paragraph 2.2, as will be discussed later on in this
paragraph.

Identifying customers by Dialed Number Identification Service (DNIS) is a more practical idea,
especially in a multi-lingual call center. Customers can dial a different number for each service they
require. However, as the number of different services becomes larger, this does get more complex.
Companies cannot expect their customers to learn and use too many different numbers. As with

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 15 of 48 By Theo Peek

ANI, identification by DNIS changes the process of Paragraph 2.2; these changes will also be
discussed later on in this paragraph.

In almost all situations, the use of an Interactive Voice Response system (IVR) is practical.
Customers can choose from a number of menu choices (“Para español, pulse uno – For English,
press two – Pour la version francaise, choisir le trois”) or even successive menu choices.
Moreover, an IVR can make agent service redundant, for instance in the case of an account
balance line. The use of an IVR changes the process of a call, as shown in Figure 2.3.

Figure 2.3: First phase of the process of a call in a call center using skill groups

After Connect, the IVR plays a welcome message and the first set of menu choices. The customer
then chooses one of them. A customer can make successive menu choices, denoted by *. If a
customer is served by the IVR only, i.e. without having spoken to an agent, the call now ends. If
the customer wishes to speak to an agent, then the IVR assigns the call to a certain skill group,
based on the menu choices. This could also be done by the ACD, depending on the technical

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 16 of 48 By Theo Peek

configuration of the call center. If all agents in the skill group are engaged, the call is queued,
waiting for an agent to become available. From this point onwards, the process is similar to the
process described in Paragraph 2.2. This activity diagram is easily adapted to identification by ANI
or DNIS.

2.4 Further enhancements
In order to increase productivity or service level, a few other enhancements can be made. These
include call blending, virtual call center and multi-media. Enhancements like this are beyond the
scope of this report, but the solutions offered in Chapter 5 can easily be adapted to the situations
that these enhancements present. For more information, see [1].

2.5 Mathematical models
The models presented in this paragraph illustrate the need for data collection and analysis.

2.5.1 Basic mathematics
To optimize the process, for instance by determining the optimal number of agents, mathematical
models can be used. For this purpose, we have to consider a call center as a queueing system. An
example of a queueing system can be found in Figure 2.4.

Figure 2.4: A queueing system

In a queueing system, there are arrivals, a queue, a number of servers and departures. Calls to a call
center can be seen as arrivals in the same way as customers arrive at a store or products arrive at a
sealing machine. If all agents, shop assistants or the sealing machine are busy, the call, customer or
product is placed in a queue before being served. There can be one ore more servers: one, in the
case of the sealing machine, and more than one in the case of shop assistants or agents. As the
servers do their job, the queue size decreases. One by one, all calls, customers or products are
being served. After service, there is a departure: a customer hangs up or leaves the store or the
product is neatly sealed.

To apply mathematics to this system, we have to measure the named quantities. We have to know
how many arrivals there are, how long the service time is and what the number of servers is. We
measure the arrivals as a rate or intensity: the arrival rate λ, defined as the number of arrivals per
time unit (e.g. second, minute or day). From an existing queueing system, λ can be calculated by
measuring every inter-arrival time: the time between two successive arrivals. Then λ = 1 / [the
mean inter-arrival time].

If we plot these inter-arrival times in a histogram, we get an empirical distribution of inter-arrival
times. If a mathematical probability distribution fits to the empirical distribution, we model the
arrivals using the mathematical probability distribution. Often, the exponential distribution is used,

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 17 of 48 By Theo Peek

because of its practical properties: it is for instance memoryless. This distribution looks like Figure
2.5. With inter-arrival times exponentially distributed, the process of arrivals is called a Poisson
process.

Figure 2.5: The exponential distribution

To measure the service times, we calculate the mean service time S from all available service times.
In further calculations, we often need a rate (like the arrival rate), so we define the service rate µ =
1 / S. Like the inter-arrival times, we can also fit a probability distribution to the service times, and
again, the exponential distribution is often used.

Having modeled the queueing system with exponential inter-arrival times and service times, we get
an M/M/k model (also referred to as Erlang C model) with parameters λ and µ. The first M (for
Markovian) says: the arrival process is a Poisson process with parameter λ. The second M (again
for Markovian) says: the service times are exponentially distributed with parameter µ. k is the
number of servers in the system.

Using this model, k can become as large as we wish. In reality, the number of telephone lines
bound the number of agents in a system. If a call center only hires 100 trunk lines from its
telephone company, engaging 120 agents would be useless, as only 100 customers at a time can be
connected to the call center. Since the M/M/k model assumes an infinite system capacity, the
M/M/k/K model (also referred to as Erlang B model), with K the system capacity or number of
trunk lines, describes reality better. If the total number of customers in the system reaches K,
arriving calls are blocked until a customer leaves the system. [2] even describes situations in which
it is advantageous to block calls when there is enough capacity. In reality, however, most call
centers equip themselves with an ample number of trunks, because of the relatively low costs of an
extra trunk line. In view of the main problem statement, this report does not deal with a blocking
situation. Therefore, the M/M/k model will be used from this point onwards.

Another shortcoming of the M/M/k model is that abandonments do not occur. This is a result of
the infinite-patience assumption of the M/M/k model. In reality, customers have a finite patience.
Research even shows that general patience can be analyzed [1]. Therefore, the M/M/k+M model

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 18 of 48 By Theo Peek

(also referred to as Erlang A model) can be used, where +M stands for Markovian patience: an
exponentially distributed patience.

All three models described assume all durations to be exponentially distributed. These models can
be generalized by replacing an M with a G for general. In [10], for instance, the service times were
lognormal distributed, see Figure 2.6. These models can be used to describe reality better, but they
are less powerful in calculation. Therefore, they are often used in simulation models.

Figure 2.6: The lognormal distribution

2.5.2 Advanced mathematics
When λ, µ and k of the M/M/k model are known, we can predict the service level by the Erlang
(C) formula. This formula holds if the system is stable, which means that the agents are able to
handle all inbound calls. To verify that, I introduce the load a = λµ. The agents are able to handle
all calls if a < k, so if a < k the system is stable. The Erlang formula is:

µ
taseakCSL)(),(1 −−−= ,

with

11

0)()!1(!)()!1(),(
−−

=

−−+−−= ∑k
j

kjk

akk
a

j
a

akk
aakC

the probability that an arbitrary customer finds all agents busy. This probability is often referred to
as the probability of delay.

We can use the Erlang formula to gain all sorts of insight. We could, for instance, be interested in
the effect of changes to the parameters on our call center. For example:

� How much lower would our service level be if the arrival rate increases by 10%?
� If we can reduce service times by ten seconds, what will the effect on our service level be?
� If we hire one more agent, will our service level finally reach 80%?

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 19 of 48 By Theo Peek

2.6 Data collection and analysis
The answers to these questions can be predicted with the Erlang formula, as long as we have data
to extrapolate. For example, if we wish to answer the first question, we must assume that our
service times and number of agents remain the same. So we analyze historical data to determine
the distribution and mean of the service times and the current arrival process. We should of course
also know the current number of agents, but that is likely to be the case. Call center managers will
also use data to check their agents’ productivity.

Here we see the importance of data collection. This is the first step towards management
information: keeping track of everything that happens. There is a huge difference between data
and information: data become information, if the figure presented is relevant to the recipient. A
call center manager is not interested in the fact that there was a call at 9:34:57 a.m. if there are
hundreds of calls every day. In that case, the fact that there was a call at 9:34:57 a.m. is an example
of data. However, the fact that on 17th October 2002 75% of all calls were answered within 20
seconds is relevant to a manager and therefore information. Creating management reports like the
one in Figure 2.7 from a database is equivalent to getting information from data. This information
can then be analyzed for various purposes, for instance in determining the parameters for the
Erlang formula.

At the bottom page 20, a typical weekly call center management report is shown. It is taken from
an actual call center, but for confidentiality reasons, I have altered some of the information.
However, it is very representative. The report can apply to the whole call center, or to a single skill
group. Let us assume that it applies to a skill group. For each half hour, the following figures are
shown:

� Logged on time in hours, minutes and seconds;
� Percentage of time that the agents in the skill group spent on:

� Inbound calls;
� Outbound calls;
� Wrap-up;
� Idle;
� Available.

� The absolute number of inbound calls that the agents in the skill group handled;
� The absolute number of outbound calls that the agents in the skill group handled;
� The absolute number of abandoned calls that were routed to the skill group;
� The average number of inbound calls that the agents in the skill group handled in one

logged on hour;
� The average number of outbound calls that the agents in the skill group handled in one

logged on hour;
� The average duration of:

� Inbound calls;
� Outbound calls;
� Wrap-up;
� Answering;

� One Touch Ratio: the percentage of calls that agents handled without transferring them to
other agents;

� Service level: the percentage of calls that were answered within 20 seconds;
� Productive Time Ratio: Percentage of time spent on inbound plus the percentage of time

spent on outbound.

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 20 of 48 By Theo Peek

At the bottom of the report, a summary row states the averages or totals for the entire day.

The number of inbound calls is used to determine the arrival rate. In this report, the skill group
received 105 calls during the half hour starting at 11:30 a.m. For that half hour, the arrival rate λ
would be one of the following:

� 105 per half hour;
� 210 per hour;
� 3.5 per minute;
� 0.058 per second.

It is not relevant which one we choose, as long as we use the same time-unit (hour, half hour,
minute or second) throughout the whole model. For this report, I have decided to use minutes, so
λ = 3.5.

The average service time is equal to the average length of inbound calls plus wrap-up. For this skill
group in this half hour, it is 135.5 + 51.7 = 187.2 seconds ≈ 3.12 minutes. That means that the
service rate µ = 1 / 3.12 ≈ 0.32.

The number of agents k can be found in the column Logged On Time: 12:01:02, which means a
little more than 24 agents were logged on during this half hour.

Figure 2.7: A typical call center management report (part I)

Chapter 2: What is a Call Center?

Using XML in Call Centers Page 21 of 48 By Theo Peek

Figure 2.7: A typical call center management report (part II)

Chapter 3: Why are tables not a feasible data structure?

Using XML in Call Centers Page 23 of 48 By Theo Peek

3 Why are tables not a feasible data structure?
3.1 What are call center log data?
Call center log data are commonly stored in tables of relational databases. That leads to raw data,
which look like Figure 3.1. The rows do not fit on a page, so they are divided into three parts
shown underneath each other. Please note that this is a fictitious example, which I have designed
based on my experience with various ACDs.

Figure 3.1: Call center log data

It is quite difficult to determine what has actually happened here. Row 1 is an abandoned call
(Disposition 29 means abandoned) from number 020 777 4444 to 800 0800. The caller abandoned
after 26 seconds.

Rows 2 and 3 have the same CallID, which means that they belong together. Disposition
12 (row 2) means transferred, so the primary agent (AgentID 1234) transferred the call to a
secondary agent (AgentID 1589) after 1212 seconds (TalkTime + HoldTime). The conversation
from then on is summarized in row 3. CallType 4 means internal call and Disposition 21 means
normal termination. So after 445 seconds with the secondary agent, the caller hung up.

What I want to illustrate with this example is that the current storage of call center log data is very
complicated. If you have never seen call center log data before, you will probably not be able to
understand them. Please note that if the rows were sorted by DateTime, as is often the case, the
rows belonging together would be separated by the row of the abandoned call.

3.2 What is a data structure?
A data structure is a way to store data. The most common data structure is a relational database
consisting of several tables, as shown in the previous paragraph. Other data structures include tree
structures and list structures, displayed in Figure 3.2 and Figure 3.3.

Chapter 3: Why are tables not a feasible data structure?

Using XML in Call Centers Page 24 of 48 By Theo Peek

Figure 3.2:Tree structure Figure 3.3: List structure

The reason why tables are not the best data structure for call center log data is that they do not
describe reality very well. Tables are useful when there are several occasions (in rows) on which
the quantities to store (in columns) are (almost) identical. If we look at Figure 2.1 through Figure
2.3, we see that there are numerous situations in which we need to store different quantities. For
instance, when a customer abandons before reaching an agent, there is no need to store Talk Time
or Hold Time.

A tree structure can describe the process better, as will be shown in Chapter 5, because a tree
structure is richer than a table structure, which means that it is easy to convert tables to trees, but
hard or impossible to convert trees to tables. The tree structure which XML uses is very flexible,
which makes it ideal to describe the process.

The reason why tables are used as a data structure is that the technology to distill information
from data is mature and reliable, though difficult. The Structured Query Language (SQL) is often
used for this purpose. At the moment, tree-structured XML is full-grown and ready to take over to
become the standard in data storage. Database manufacturers have XML database management
systems (DBMSs) waiting on their shelves for application.

3.3 Why look at log data?
If log data are stored in relational databases, SQL can be used to retrieve information from them.
An SQL query does not care if the data are complex: if the query is programmed correctly, the
right information is retrieved. So why is it a problem that log data are difficult to understand for
people? The answer is that they have to check whether the data are stored correctly and verify the
SQL query before they can rely on technology to create reports for them. Moreover, even if data
are stored correctly and the SQL is verified, the occasional need to check the log data for a
particular call still remains. My personal experience with call centers strongly supports this; it was
the reason to write this report in the first place.

Chapter 4: What is XML?

Using XML in Call Centers Page 25 of 48 By Theo Peek

4 What is XML?
This chapter shows how XML can improve call center data storage. It is not meant as a complete
XML course, but even if you do not fully understand this chapter, you will still be able to see why
XML is a better call center log data structure than a set of tables. For a complete XML course,
please consult [5] or [6].

4.1 Introduction
XML is short for eXtensible Markup Language. In a markup language the data are between tags.
Extensible means that you can invent tags yourself. Consider the following example:

<name>Theo</name>

The data (Theo) are between tags: a start tag (<name>) and an end tag (</name>). Together they form
an element. Elements are structured in a tree structure (see also Figure 4.1):

<person>
 <name>
 <first_name>Theo</first_name>
 <last_name>Peek</last_name>
 </name>
 <address>
 …
 </address>
</person>

Figure 4.1: The tree structure of XML

name is called a child element of person. Although you might see a resemblance with HTML, the
HyperText Markup Language, which is used to create web pages, these two languages are
definitely not the same. Both HTML and XML are sub-versions of SGML (Standard Generalized
Markup Language) and both use tags to structure data. However,

� HTML uses a predefined set of tags whereas XML is extensible;
� XML is more strictly structured than HTML. In HTML it is, for instance, possible to omit

certain end tags, which is not allowed in XML;
� XML can be validated using a definition file (see Paragraph 4.2.3);
� XML was designed to describe data and to focus on what data are; HTML was designed to

display data and to focus on what data look like;
� XML is case sensitive.

The World Wide Web Consortium (W3C) developed XML, starting in 1996, and resulting in the
first standard (Version 1.0) in 1998.

Chapter 4: What is XML?

Using XML in Call Centers Page 26 of 48 By Theo Peek

4.2 A quick guide
4.2.1 Basic XML
An XML document always starts with the XML declaration:

<?xml version="1.0"?>

This is immediately followed by the root element. An XML document contains exactly one root
element (address_book):

<?xml version="1.0"?>
 <address_book>
 …
 </address_book>

The root element can, like all elements, contain:

� Text (simple content);
� Other elements (element content);
� Nothing (empty content).

Although an element can contain both text and other elements (mixed content), this is not
recommended as it is more structured to separate simple content and element content. So:

<?xml version="1.0"?>
 <address_book>
 <person>
 <name>
 <first_name>Theo</first_name>
 <last_name>Peek</last_name>
 </name>
 <address>
 …

</address>
 <comments/>
 </person>

<person>
 <name>
 <first_name>Ger</first_name>
 <last_name>Koole</last_name>
 </name>
 </person>
 </address_book>

first_name and last_name are the only elements which contain simple content; the rest contain
element content. <comments/> is an example of empty content. The slash at the end of the tag
should be interpreted as: “this is an empty element, so do not expect an end tag.”

4.2.2 Attributes and Namespaces
Attributes can be used to give meta-information, i.e. information about the data. This could be
done for instance in the person element, like this: <person gender=”male”>. gender is the attribute
with value male. The value of an attribute is always enclosed in double quotes. If the value of an
attribute contains double quotes, it can also be enclosed in single quotes. Suppose we want to store
the following sentence: John said: “Hello!”, then we could store it like this: <sentence
contents='John said: "Hello!"' />.
Very often, attributes can be replaced by extra elements:
…

Chapter 4: What is XML?

Using XML in Call Centers Page 27 of 48 By Theo Peek

<person>
 <gender>male</gender>
 <first_name>
…

It is recommended to use elements instead of attributes whenever possible, since elements can be
better validated and processed.

Suppose we assign an ID number to every person and we define the address by a street and a
number. Then we will get a number element twice: once in the context of the person and once in
the context of the address. To avoid confusion and potential conflicts, we can use namespaces.
Every namespace has its own prefix: for instance, we use the p namespace prefix for person
elements and the a namespace prefix for address elements. This would result in the following
example:

<?xml version="1.0"?>
 <address_book>
 <p:person>
 <p:number>1</p:number>
 <p:name>
 <p:first_name>Theo</p:first_name>
 <p:last_name>Peek</p:last_name>
 </p:name>
 <a:address>
 <a:number>15</a:number>
 <a:street>De Boelelaan</a:street>
 </a:address>
 <p:comments/>
 </p:person>

<p:person>
 <p:number>2</p:number>
 <p:name>
 <p:first_name>Ger</p:first_name>
 <p:last_name>Koole</p:last_name>
 </p:name>
 </p:person>
 </address_book>

Now, there can be no misunderstanding about the two number elements. The XML file shown
above is not yet complete. We should declare the namespaces a and p (added parts are bold):

<?xml version="1.0"?>
 <address_book>
 <p:person xmlns="http://www.TheoPeek.nl/Person">

<p:name>
 <p:first_name>Theo</p:first_name>
 <p:last_name>Peek</p:last_name>
 </p:name>
 <a:address xmlns="http://www.TheoPeek.nl/Address">

<a:number>15</a:number>
 <a:street>De Boelelaan</a:street>
 </a:address>
 <p:comments/>
 </p:person>

<p:person>
 <p:number>2</p:number>
 <p:name>
 <p:first_name>Ger</p:first_name>
 <p:last_name>Koole</p:last_name>
 </p:name>
 </p:person>
 </address_book>

As you can see, we declare a namespace at the point where it is first used. In the xmlns (XML
NameSpace) attribute we must declare a URI (Uniform Resource Identifier): a string to identify

Chapter 4: What is XML?

Using XML in Call Centers Page 28 of 48 By Theo Peek

the namespace uniquely. It is common to use a URL (Uniform Resource Locator), for they are by
definition unique. Please note that there is no need for the URL to exist (in this case, they do not!).

4.2.3 Structuring by DTD or XML Schema
Based on the previous paragraph, you could claim that XML is not structured at all: you can invent
tag and structure elements entirely to your own liking. Fortunately, we can structure and define our
XML document by a Document Type Definition or an XML Schema. Both define which elements
can be used and how they should be structured. In that way, we can define for instance:

� address_book is the root element, which contains person elements;
� first_name and last_name elements can only exist within the name element;
� name can only exist within the person element;
� A person element can also contain an address element, but this is not required.

XML Schema was developed later than DTD and therefore DTD is more common at this
moment. However, XML Schema is more powerful, so we will use XML Schema to validate our
XML document. XML Schemas themselves are written in XML and are also referred to as XSDs
(XML Schema Documents). The XSD of our address book example would begin like this:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.TheoPeek.nl"
xmlns="http://www.TheoPeek.nl"
elementFormDefault="qualified">

The first line indicates that the XSD is an XML document. It can also be omitted, but in editors it
is useful to include it, for formatting purposes. The second line defines that the xs namespace
refers to the schema of schemas, defined by the W3C. The third defines the namespace that the
schema works on. The fourth line specifies the default namespace of the XSD (in this case, the
same as the target namespace). The last line specifies that every element used in the XML
document must be declared in the XSD.

We then continue the XSD with the definitions of the elements, starting with address_book:

<xs:element name="address_book">
 <xs:complexType>
 <xs:sequence>

These are three start tags, so we will need end tags for them later on. element is defined in the xs
namespace and has an attribute containing the name of the element. adress_book is a complex type,
as it contains other elements. The elements contained (all person elements) appear in a sequence:

<xs:element name="person" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>

Since all elements are person elements, the first element in the sequence is the person element. With
the minOccurs and maxOccurs attributes we can control the number of times an element can occur in
the sequence. If omitted, these attributes are both assumed to be one. In this case, we wish to
store more than one person in our address_book, so we increase maxOccurs. person also contains
other elements in a sequence:

<xs:element name="name">
 <xs:complexType>
 <xs:sequence>

Chapter 4: What is XML?

Using XML in Call Centers Page 29 of 48 By Theo Peek

And even name contains other elements in a sequence:

<xs:element name="first_name" type="xs:string" />
 <xs:element name="last_name" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

first_name and last_name are elements contained in name. They both have simple content of the
string type. Please note that the slash at the end of the xs:element tag specifies that it is an empty
element. All its information is in attributes. This is all the information there is about the name
element, so the elements are closed by end tags.
 The next element of person is the address element:

<xs:element name="address" type="xs:string" minOccurs="0"/>

address is also of the string type. Because we sometimes only know the name of a person, we wish
to be able to exclude the address element, hence minOccurs="0". Now we end all elements that we
started:

</xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

Again the XSD, but now nonstop:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.TheoPeek.nl"
xmlns="http://www.TheoPeek.nl"
elementFormDefault="qualified">

<xs:element name="address_book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="person" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first_name" type="xs:string" />
 <xs:element name="last_name" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="address" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

4.3 The future of XML
At the moment, XML is novel and therefore not very commonplace. This will certainly change in
the near future, witness the fact Microsoft’s .NET technologies rely heavily on XML [8], for
instance. Even today, all recent office suites support XML as a file format. All large software
companies have XML products ready and waiting for customers, and not without reason, as XML

Chapter 4: What is XML?

Using XML in Call Centers Page 30 of 48 By Theo Peek

has a large number of applications. Together with XSL, XML can replace HTML and word
processor formats to store documents. Together with XML Schema, XML can replace all database
and spreadsheet storage formats. Because of the large area XML can be applied in, XML could
well be the first step to a standard, data-independent, platform-independent storage language. As a
result, communication between computer programs can become much easier.

On 21st January 2003, the XML Schema Working Group of W3C released the first public Working
Draft of Requirements for XML Schema 1.1 [7]. In the near future we will see a gradual
replacement of DTDs by XML Schemas. The most important reasons for this are [5]:

� XML Schemas support data types, so:
� It is easier to describe permissible document content;
� It is easier to validate the correctness of data;
� It is easier to work with data from a database;
� It is easier to define data facets (restrictions on data);
� It is easier to define data patterns (data formats);
� It is easier to convert data between different data types;

� XML Schema are written in XML, so:
� You do not have to learn another language;
� You can use your XML editor to edit your Schema files;
� You can use your XML parser to parse your Schema files;

XML is an ideal combination of structure, imposed by an XML Schema or DTD, and flexibility or
extensibility to ease the modeling of reality. In the area of web services, XML is already a standard.
Web services will expand themselves and simultaneously enlarge the use of and familiarity with
XML. It is my hope that this report will inspire call center managers to investigate the possibility
of introducing XML into their businesses and reap the fruits of its advantages.

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 31 of 48 By Theo Peek

5 How can I use XML to log my calls?
In the previous chapter XML was introduced. In this chapter, I will use XML to log calls.

5.1 Simple examples
Please recall the example of Paragraph 3.1. If we had logged the calls in XML, what would they
look like? Let us first look at the abandoned call:

<?xml version="1.0"?>
<calls xmlns="http://www.TheoPeek.nl" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.TheoPeek.nl Call.xsd">
 <call>
 <routingPhase>
 <connect>
 <time>17:32:01</time>
 <ani>0207774444</ani>
 <dnis>08000800</dnis>
 </connect>
 <play>
 <time>17:32:01</time>
 </play>
 </routingPhase>
 <endOfCall>
 <abandon>
 <time>17:32:27</time>
 </abandon>
 </endOfCall>
 </call>
</calls>

First, we use several attributes in the root element calls to link the XML document with an XSD:
Call.xsd. The connect element matches the Connect state of Figure 2.3. The play element matches
the “IVR plays welcome message” state. The call ends by abandonment at 5:32:27 p.m. As you can
see, we can match the activity states of the UML diagrams of Chapter 2 with XML elements, so we
get a very clear description of the process as it happened.

Let us take a look at the second call of Figure 3.1. Please note that the actual times may not
correspond, the example is merely to show the events that took place.

<?xml version="1.0"?>
<calls xmlns="http://www.TheoPeek.nl" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.TheoPeek.nl Call.xsd">
 <call>
 <routingPhase>
 <connect>
 <time>17:31:45</time>
 <ani>0204447777</ani>
 <dnis>08000800</dnis>
 </connect>
 ...

The customer is calling from number 0204447777 and has dialed 08000800. He or she now hears
the menu choices:

...
 <play>
 <time>17:31:45</time>
 </play>
 <menu>
 <time>17:31:48</time>
 <choice>1</choice>
 </menu>
 <menu>
 <time>17:31:57</time>

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 32 of 48 By Theo Peek

<choice>4</choice>
 </menu>
 ...

After choosing menu choices 1 and 4, the customer is now routed to a skill group:

...
 <routeToSkillGroup>
 <time>17:31:57</time>
 <service>Reservation</service>
 <skillGroup>English speaking</skillGroup>
 <peripheral>Lucent</peripheral>
 <location>Amsterdam</location>
 </routeToSkillGroup>
 ...

To categorize calls, we can assign services. peripheral is used when there are two or more ACDs
and location when there are two or more sites. Unfortunately, all agents in the English-speaking
skill group are busy, so the call is queued:

...
 <queue>
 <time>17:31:58</time>
 <queueLength>1</queueLength>
 </queue>
 <routeToAgent>
 <time>17:32:08</time>
 <agent>Theo Peek</agent>
 </routeToAgent>
 </routingPhase>
 ...

With every decrement of the queue, a queue element is added. This way, queue length and
perception can be analyzed. When an agent becomes available, the customer is routed to that
agent, which concludes the routing phase. The call now enters the agent phase, which matches
Figure 2.2:

...
 <agentPhase>
 <answer>
 <time>17:32:10</time>
 </answer>
 <agentAction>
 <talk>
 <time>17:32:10</time>
 </talk>
 </agentAction>
 <agentAction>
 <hold>
 <time>17:33:50</time>
 </hold>
 </agentAction>
 ...

talk, hold and consult (not shown in this example) are structured as instances of agentAction, see
Figure 5.1. For technical reasons (most call center telephones work that way), a transfer or consult
is always preceded by a hold state.

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 33 of 48 By Theo Peek

Figure 5.1: The agent phase of the process revisited.

The agent now transfers the call to another agent.

...
 <transfer>
 <time>17:34:30</time>
 <agent>Ger Koole</agent>
 <nextAgentPhase>
 <answer>
 <time>17:34:33</time>
 </answer>
 <agentAction>
 <talk>
 <time>17:34:33</time>
 </talk>
 </agentAction>
 <wrapUp>
 <time>17:35:00</time>
 </wrapUp>
 <end>
 <time>17:35:45</time>
 </end>
 </nextAgentPhase>
 </transfer>
 ...

In the transfer element, the element nextAgentPhase follows the time and agent elements.
nextAgentPhase is equivalent to the agentPhase element in which it resides. All data of a call are in
one place, as opposed to the table structure, where a call is distributed over two or more records in

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 34 of 48 By Theo Peek

case of a transfer. After the end tag of the transfer element, data of the initial agent follow: in
other words, the wrapUp below corresponds with the wrap up of the primary agent:

...
 <wrapUp>
 <time>17:34:32</time>
 </wrapUp>
 <end>
 <time>17:34:40</time>
 </end>
 </agentPhase>
 ...

This concludes the agent data of the call. Now we only need to specify how the call ended (in this
case normal termination instead of abandonment) and close all open elements:

...
 <endOfCall>
 <terminate>
 <time>17:35:45</time>
 </terminate>
 </endOfCall>
 </call>
</calls>

5.2 Complete list of events
As we saw in the previous paragraph, XML can be used to clearly describe the process of calls.
From Figure 2.1 through Figure 2.3 and Figure 5.1 we convert the action states into XML
elements. Some of the elements contain properties, of which time is a frequently used example. In
the two examples of the previous paragraph, most of the states and their properties have been
shown. To complete the model, Table 5.1 shows the complete list of all possible elements and
their properties. The table cells of talk, hold and consult are grey, because these elements are
grouped together in the agentAction element, as we have seen and will also see later on.

Table 5.1: Complete list of elements and their properties.
Phase Event / Element Properties

connect time
ani
dnis

play time
menu time

choice
routeToSkillGroup time

skillGroup
service
peripheral
location

queue time
queueLength

routingPhase

routeToAgent time
agent

answer time
talk time

agentPhase

hold time

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 35 of 48 By Theo Peek

consult time
agent

transfer time
agent

wrapUp time
end time
terminate time
abandon time endOfCall
IVR_only time

5.3 XML Schema
Now that we have all possible events, we must convert the events into an XML Schema which we
can use to validate XML documents. The (tree-like) structure of this XML Schema is shown in
Figure 5.2. Please note that this diagram is made using XMLSpy. More information on XMLSpy
can be found in Appendix B.1.

Figure 5.2: Diagram of the XML Schema.

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 36 of 48 By Theo Peek

A call consists of a routingPhase, an agentPhase and an endOfCall, which in turn contain the
elements listed in Table 5.1. Let us see how things look in XML Schema:

<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.TheoPeek.nl" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.TheoPeek.nl" elementFormDefault="qualified">
 <xs:element name="calls">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="call">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="routingPhase">
 ...

calls contains a sequence of call elements. A call element starts with the routingPhase.

...
 <xs:complexType>
 <xs:sequence>
 <xs:element name="connect" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="ani" type="xs:string"/>
 <xs:element name="dnis" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="play" type="timeOnlyType"
minOccurs="0"/>
 <xs:element name="menu" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="choice" type="menuChoice"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="routeToSkillGroup" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="service" type="xs:string"/>
 <xs:element name="skillGroup"
type="xs:string"/>
 <xs:element name="peripheral"
type="xs:string"/>
 <xs:element name="location" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="queue" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="queueLength"
type="xs:positiveInteger"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="routeToAgent" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="agent" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 37 of 48 By Theo Peek

</xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...

The routing phase contains the elements connect, play, menu, routeToSkillGroup, queue and
routeToAgent. All these elements have attribute minOccurs=”0”, because a customer can abandon at
any stage. maxOccurs is one by default. Connect contains simple elements time, dnis and ani. play has
type timeOnlyType, which is defined later on as an element which contains one child element: time.
menu can occur more than once, because customers have to make successive menu choices. menu
contains simple elements time and choice. choice has type menuChoice, which is defined later on as a
nonnegative integer of one digit. routeToSkillGroup contains simple elements time, service,
skillGroup, peripheral and location. queue contains time and queueLength, the latter being a positive
integer. Because queue appears each time the queue length decreases, maxOccurs is set to
unbounded. The last child element of routingPhase is routeToAgent, which can occur more than
once, if an agent does not answer.

routingPhase is followed by agentPhase:

...
 <xs:element name="agentPhase" type="agentPhaseType" minOccurs="0"/>
 ...

Because an agentPhase can also occur as a child element of transfer, we create a custom type:
agentPhaseType, which is defined later on. After the agentPhase, the endOfCall follows:

...
 <xs:element name="endOfCall">
 <xs:complexType>
 <xs:choice>

<xs:element name="terminate" type="timeOnlyType"/>
 <xs:element name="abandon" type="timeOnlyType"/>
 <xs:element name="IVR_only" type="timeOnlyType"/>
 </xs:choice>

</xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...

The endOfCall contains either a terminate, an abandon or an IVR_only element, which is why it is
defined as a choice instead of a sequence. This concludes the definition of the root element calls.
We have used three custom types which must also be defined:

...
 <xs:simpleType name="menuChoice">
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:totalDigits value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="timeOnlyType">
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 </xs:sequence>
 </xs:complexType>
 ...

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 38 of 48 By Theo Peek

menuChoice is a simple type which is a nonnegative integer of one digit, meaning 0, 1, …, 9.
timeOnlyType is a complex type. Elements of type timeOnlyType contain one child element: time.

...
 <xs:complexType name="agentPhaseType">
 <xs:sequence>
 <xs:element name="answer" type="timeOnlyType" minOccurs="0"/>
 <xs:element name="agentAction" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:choice>
 <xs:element name="talk" type="timeOnlyType"/>
 <xs:element name="hold" type="timeOnlyType"/>
 <xs:element name="consult">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="agent" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="transfer" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="time" type="xs:time"/>
 <xs:element name="agent" type="xs:string"/>
 <xs:element name="nextAgentPhase" type="agentPhaseType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="wrapUp" type="timeOnlyType" minOccurs="0"/>
 <xs:element name="end" type="timeOnlyType"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

The agentPhaseType starts with the answer element. The agentAction element contains either a talk,
hold or consult element and can occur more than once. The transfer element contains a time and
an agent, but also a nextAgentPhase of type agentPhaseType, which creates an internal loop of
agentPhases. This does not cause any problems in practice, because a call will usually not be
transferred more than once. The advantage of this structure is that all data of a call are stored in
one place, within one call element.
This concludes the description of the XML Schema which can be used to validate XML
documents.

5.4 Implementation in the business
5.4.1 Hardware
The use of XML requires little more hardware capacity than an ordinary database. With the
internal loops of transferred calls, the computer should store a little more information in main
memory compared to a database which writes a record more often, resulting in the calls being
distributed over several records. Furthermore, because XML is text-based, it takes more space on
hard disks than a traditional database. On the other hand, standard compression techniques like
ZIP work well on these text-based files. The second XML example of Paragraph 5.1 was
compressed by 65% by using the standard Windows program WinZip 8.1. XML Databases include
compression and other functionality.

All in all, this should not lead to real problems. The extra requirements are marginal,
especially when we consider the current price of memory and hard disk space.

Chapter 5: How can I use XML to log my calls?

Using XML in Call Centers Page 39 of 48 By Theo Peek

5.4.2 Software
The adaptation of software, on the other hand, requires more investments. Plenty of (freeware)
XML tools can be found on the internet, but the installation and overall getting used to new
software is always challenging. Nevertheless, it is only a matter of time before XML will become
commonplace, as I have shown in Paragraph 4.3.

The use of XML in a call center requires the following:

� Call routing software which logs in XML;
� An XML database to store call logs;
� An XML query tool to extract information from the data.

The first requirement is most difficult to meet. Writing a single database record every time a
particular event occurs is easy, but in order to use XML effectively, a sophisticated tree structure
has to be formed. The Document Object Model (DOM) is often used for this purpose. DOM is
an Application Programming Interface (API), a set of pre-programmed instructions for
manipulating XML. It contains standard functions for adding an element, writing an XML
structure to disk and so on. In that way, the complete call process is logged in the computer
memory before it is written to disk in XML, all using DOM. Using DOM has another advantage:
when another program needs XML data, it does not need to wait until they are written to disk, but
it can access the data by using DOM as well. More information on DOM can be found in [7]. Also
in [7], a list of tools can be found, that might assist you using DOM.

The current state of the market for XML database products (databases and query tools) can be
found in [8]. As a compromise, it is possible to convert the currently used tables into XML and
test them. The data cannot be as detailed as described before, because data are stored less
detailedly in tables, but this does offer the opportunity to test and experience the advantages that
XML offers, without losing the proven safety of database technology. Information on products
that can convert tables into XML can also be found in [9].

5.4.3 Performance
In a very large call center, it can sometimes take time to extract information from data, because of
the huge number of records a query has to process. When using tables, performance can be
upgraded using summary tables containing half hour data (for instance number of calls, average
length for that specific half hour interval). With XML a similar solution could work, creating an
XML document containing summary data. Even in this case, XML offers greater flexibility than
fixed tables.

Chapter 6: Conclusion

Using XML in Call Centers Page 41 of 48 By Theo Peek

6 Conclusion
After presenting the challenges call center managers are faced with (Chapter 2) and the problems
traditional data structures and information systems present (Chapter 3), I have introduced XML
(Chapter 4) as an alternative log data structure (Chapter 5).

My conclusion is that XML offers advantages over tables and that call center managers should
seriously consider investing in this technology, based on the following facts:

� Tables are rigid and therefore by definition not suitable to model a process as sophisticated
as a call. XML is much more flexible and I have created an XML Schema that closely
matches the process of a call I have modeled, proving XML can approximate reality far
better than tables.

� XML is on its way to become the standard in data interchange between computer
programs. It is already the standard in the area of web services and it becomes more and
more accepted in other areas as well. Call center log data are typically data that need to be
processed by computer programs in order to extract information from them and they are
therefore a perfect application area for XML.

Chapter 7: Suggestions for further research

Using XML in Call Centers Page 43 of 48 By Theo Peek

7 Suggestions for further research
7.1 RDF
Resource Description Framework (RDF) is a knowledge modeling framework with an XML
syntax. The idea behind RDF is that the element name carries information as well. Using XML, it
is logical to use country as the name for the element <country>The Netherlands</country>. But if we
were to call that element soup and define it correctly in the XML Schema, the XML document
would still be valid: XML does not ensure logic. RDF is a way to use Artificial Intelligence (AI) to
ensure this logic in data storage. More on RDF can be found in [7] and [11].

7.2 XML tools
A full description of the XML tools available is beyond the scope of this report. There are
numerous ways to create management reports like the one presented in Figure 2.7 from the XML
data shown in Paragraph 5.1. Finding out which tools are most practical for the mathematical
analysis of call center data could be the subject of another BWI-report. My XML Schema from
Paragraph 5.3 and [9] could function as a starting point.

7.3 Agent log
In this research report, I have focused on call log data. To calculate some numbers that are shown
in Figure 2.7, we need the telephone log of the agent: when did he or she log on, when did he or
she take a break, for instance. This is relatively easy to achieve, using the knowledge of Chapters 4
and 5.

7.4 Relativity
In a relational database, primary and foreign keys are used to create relations. When a call is
answered by an agent, for instance, a foreign key is stored instead of the name of the agent. The
foreign key is a number, which can also be found in another table, which contains all agents and
their numbers (primary keys).

In my opinion, using foreign keys in a call log is not necessary; the ACD can find the name of the
agent in a configuration table or XML document and include the name directly. This makes the log
clearer. For this reason, I have not extensively researched the relational possibilities XML offers.
However, such a technique is available, using the ID and IDREF attributes. More information about
these attributes can be found in [5] and [12].

Appendix A: Bibliography

Using XML in Call Centers Page 45 of 48 By Theo Peek

Appendix A: Bibliography
[1] Noah Gans, Ger Koole and Avi Mandelbaum: Telephone Call Centers a Tutorial and

Literature Review. Downloadable from http://www.cs.vu.nl/obp/callcenters.
[2] Ger Koole: Call center mathematics. Downloadable from

http://www.cs.vu.nl/~koole/ccmath.
[3] Martin Fowler with Kendall Scott: UML Distilled, Second Edition. Addison Wesley

Longman Inc., 2000.
Information about Activity Diagrams can be found in Chapter 9, pages 129-139.

[4] G.M. Koole and A. Mandelbaum: Queueing models of call centers: An introduction.
Annals of Operations Research, 113:41-59, 2002.

[5] http://www.w3schools.com.
A site with an online XML course.

[6] William R. Stanek: XML Pocket Consultant. Microsoft Press, 2002.
[7] http://www.w3.org.
[8] http://www.microsoft.net/net/basics/whatis.asp.
[9] http://www.rpbourret.com/xml/XMLDatabaseProds.htm.
[10] Suzanne de Gruijter, Joost van Hooff, Hugo Huijser, Shaireen Niamat, Theo Peek,

Herman Stofbergen and Tjebbe Witteveen: Roosteren in het Fortis Contact Center. A
dutch report on call center scheduling.

[11] http://www.xml.com/pub/a/2001/01/24/rdf.html.
[12] http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/sqlxml3/htm/ssxsdannotations_8y9f.asp.

Appendix B: XML Software

Using XML in Call Centers Page 47 of 48 By Theo Peek

Appendix B: XML software
B.1 XMLSpy
Although XML documents can be created with a simple editor like Notepad, an editor with
validation functionality is very practical. XMLSpy is a sophisticated XML editor. Users can write
XML documents in code, assisted by helpful tools like a list of possible elements and attributes.
One can also switch to a visual mode, in which one can easily add a child element in a very user-
friendly way. When using an XML Schema or a DTD, XMLSpy validates an XML document
automatically. Figure B.1 shows a screenshot of the program, editing the call example of Paragraph
5.1. On the left side is a window containing information about the current element. In the middle
is the XML itself and on the right there are windows containing a list of elements, a list of
attributes and a list of entities.

Figure B.1: XMLSpy

When we select ‘Validate’, XMLSpy validates our XML document, see Figure B.2.

Figure B.2: XMLSpy has validated our XML document.

Appendix B: XML Software

Using XML in Call Centers Page 48 of 48 By Theo Peek

Switching to ‘Enhanced grid view’, we can examine our XML document visually, see Figure B.3.

Figure B.3: Enhanced grid view

Figure 5.2 was made with the ‘Schema/WSDL Design View’.

XMLSpy can be downloaded from http://www.altova.com. Version 5 Home Edition can be
evaluated for 30 days.

